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We propose Guided Zoom, an approach that utilizes

spatial grounding to make more informed predictions. It

does so by making sure the model has “the right reasons”

for a prediction, being defined as reasons that are coherent

with those used to make similar correct decisions at training

time. The reason/evidence upon which a deep neural net-

work makes a prediction is defined to be the spatial ground-

ing, in the pixel space, for a specific class conditional prob-

ability in the model output. Guided Zoom questions how

reasonable the evidence used to make a prediction is. We

show that Guided Zoom results in the refinement of a

model’s classification accuracy on two fine-grained classi-

fication datasets.

1. Introduction

For state-of-the-art deep single-label classification mod-

els, the correct class is often in the top-k predictions, lead-

ing to a top-k (k = 2, 3, 4, . . . ) accuracy that is significantly

higher than the top-1 accuracy. This is also more crucial in

fine-grained classification tasks, where the differences be-

tween classes are quite subtle. For example, the Stanford

Dogs fine-grained dataset on which we report results has

a top-1 accuracy of 86.9% and a top-5 accuracy of 98.9%.

Exploiting the information provided in the top k predicted

classes can boost the final prediction of a model. In this

work, we do not completely trust the model’s top-1 predic-

tion as it does not solely depend on the visual evidence in

the input image, but can depend on other artifacts such as

dataset bias or unbalanced training data. Instead, we ex-

ploit the discriminative visual evidence used for each of the

top-k predictions for decision refinement.

Examples of fine-grained classes present in the literature

are breeds of animals [7], birds [14], models of aircraft [10]

and vehicles [9]. Since fine-grained classification requires

focusing on details, the localization of salient parts is cru-

cial. This has been addressed using supervised approaches

∗Equal contribution

Figure 1: Pipeline of Guided Zoom. A conventional

CNN outputs class conditional probabilities for an input im-

age. Salient patches could reveal that evidence is weak. We

refine the prediction of the conventional CNN by introduc-

ing two modules: 1) Evidence CNN determines the consis-

tency between the evidence of a test image prediction and

that of correctly classified training examples of the same

class. 2) Decision Refinement uses the output of Evidence

CNN to refine the prediction of the conventional CNN.

that utilize part bounding box annotations [15, 17, 5] or have

humans in the loop to help reveal discriminative parts [3].

Part localization has also been addressed using weakly su-

pervised approaches [4, 12, 19, 6], solely relying on im-

age labels during both training and testing. Another class

of works attend to a recursively zoomed location [4, 11],

while other methods use multiple attention mechanisms

[12, 19]. Some approaches enforce correlations between

parts [12, 6], while others do not consider this possible

source of information [8, 4].

In this work, we want to answer the following ques-

tion: is the evidence upon which the prediction is made

reasonable? Evidence is defined to be the grounding, in

pixel space, for a specific class conditional probability in

the model output. The evidence proposed here is in the

form of a saliency map resulting from weak supervision. It
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is directly obtained using grounding approaches that utilize

a network’s internal representation and a dataset’s image-

level annotation.

Saliency is widely used for many computer vision tasks

including spatial semantic segmentation, spatial object lo-

calization, and temporal action localization. However,

saliency has been less exploited for improving model clas-

sification. Cao et al. [1] use weakly supervised saliency

to feedback highly salient regions into the same model that

generated them to get more prediction probabilities for the

same image and improve classification accuracy at test time.

In contrast, we use evidence grounding as the signal to a

module that assesses how much one can trust a Convolu-

tional Neural Network (CNN) prediction over another.

We propose Guided Zoom, an approach that utilizes

spatial grounding to refine model predictions in fine-grained

classification scenarios. Guided Zoom zooms in on the

evidence used to make a preliminary decision at test time

and compares it with the evidence of correct predictions

made at training time. As demonstrated in Fig. 1, we pro-

pose not to solely rely on the prediction a conventional CNN

produces, but to examine whether or not the evidence used

to make the prediction is coherent with training evidence of

correctly classified images. This is performed by the Ev-

idence CNN module, which aids the Decision Refinement

module to come up with a refined prediction. The desired

goal in Guided Zoom is that the evidence of the refined

class prediction is more coherent with the training evidence

of that class, than the evidence of any of the other candidate

top classes.

Our approach does not require part annotations, thus it is

more scalable compared to supervised approaches. More-

over, our approach uses multiple salient regions and there-

fore does not propagate errors from an incorrect initial

saliency localization, while implicitly enforcing part corre-

lations enabling models to make more informed predictions.

As the experiments of Wei et al. [13] suggest, although

only part(s) of an object will be highlighted in the evidence,

a more inclusive segmentation map can be extracted from

the already trained model at test time. We follow their strat-

egy of adversarial erasing to obtain a rich representation for

the Evidence CNN module. By questioning network evi-

dence, we demonstrate refined accuracy on two fine-grained

classification benchmark datasets.

2. Guided Zoom

Evidence CNN. Conventional CNNs trained for image

classification output class conditional probabilities upon

which predictions are made. The class conditional prob-

abilities are the result of some corresponding evidence in

the input image. We recover/ground such evidence using

the spatial grounding method contrastive Excitation Back-

prop (cEB) [16]. Starting with a prior probability distribu-

Figure 2: Implicit part detection obtained as a result of two

iterations of adversarial erasing. The first row shows the

most salient patches of four images from the class Chi-

huahua in the Stanford Dogs dataset. The second row

shows the second most salient patches, and the third row

shows the third most salient patches for the same four im-

ages. Assigning the same class label to the different parts of

a single dog image enforces implicit part-label correlation.

tion, cEB passes top-down signals through excitatory con-

nections (having non-negative weights) of a CNN. Recur-

sively propagating the top-down signal layer by layer, cEB

computes class-specific discriminative saliency maps from

any intermediate layer in a partial single backward pass.

We generate a reference pool, P of (evidence, predic-

tion) pairs over which Evidence CNN will be trained for the

same classification task. Pairs in the pool P are extracted

for correctly classified training examples using the ground-

ing method cEB. This is done by setting the prior distribu-

tion in correspondence with the correct class to produce a

cEB saliency map for it. We extract 150x150-pixel patches

from the original image around the resulting peak saliency.

For example, the most discriminative evidence to differen-

tiate dogs tends to be the face. However, the next most dis-

criminative patches may also be good additional evidence

for differentiating fine-grained categories.

Inspired by the adversarial erasing work of Wei et al.

[13], we augment our reference pool with patches result-

ing from performing an iterative adversarial erasing of the

most discriminative evidence from the image. We notice

that adversarial erasing results in implicit part localization

from the most to least discriminative parts. Fig. 2 shows the

patches extracted from two iterations of adversarial saliency

erasing for sample images belonging to the class Chihuahua

from the Stanford Dogs Dataset. All patches (parts) ex-

tracted from this process inherit the ground-truth label of

the original image. By labeling different parts with the
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Method
Part / Whole

Annotation

Multiple

Attention

CUB-200-2011 Dataset

Top-1 Accuracy (%)

Stanford Dogs Dataset

Top-1 Accuracy (%)

RA-CNN [4] x x 85.3 87.3

OSME + MAMC [12] x X 86.5 85.2

MA-CNN [19] x X 86.5 -

O
u

r
s ResNet-101 Baseline x x 82.3 86.9

Guided Zoom (k=3) x X 85.0 88.4

Guided Zoom (k=5) x X 85.4 88.5

Table 1: We present results for our approach for k=3,5; using the top 3 (or 5) candidate classes to refine the final prediction.

Guided Zoom improves the ResNet-101 Baseline by at least 2.7% for the CUB-200-2011 dataset and at least 1.5% for the

Stanford Dogs dataset. We also compare our classification accuracy with state-of-the-art weakly-supervised methods (do not

use any sort of annotation apart from the image label) and some representative methods that use additional supervision such

as part annotations for fine-grained classification of this dataset. We indicate which methods use multiple parts, and which

focus on a single part using the multiple attention flag; using part annotations implicitly entails multiple attention.

same image ground-truth label, we are implicitly forcing

part-label correlations in Evidence CNN.

Including such additional evidence in our reference pool

gives a richer description of the examined classes compared

to models that recursively zoom into one location and ig-

nore the less discriminative cues [4]. We note that we add

an evidence patch to the reference pool only if the removal

of previous salient patch does not affect the correct classifi-

cation of the sample si. Erasing is performed by adding a

black-filled 85x85-pixel square on the previous most salient

evidence to encourage a highlight of the next most salient

evidence.

Assuming n training samples, for each sample si where

i ∈ 1, . . . , n we have l + 1 evidence patches in the refer-

ence pool ei
0
, . . . , eil . ei

0
is the most discriminative initial

evidence, and ei
1
, . . . , eil is the set of l next discriminative

evidence where l ≤ L and L is the number of adversarial

erasing iterations performed (L = 2 is used in our exper-

iments). For example, ei
2

is the third most-discriminative

evidence, after the erasing of ei
0

and ei
1

from the original

image. We then train a CNN model, Evidence CNN, on the

generated evidence pool P .

Decision Refinement. At test time, we analyze whether

the evidence upon which a prediction is made is reasonable.

We do so by examining the consistency of a test (evidence,

prediction) with our reference pool that is used to train Ev-

idence CNN. The refined prediction will be biased toward

each of the top-k classes by an amount proportional to how

coherent its evidence is with the reference pool. For exam-

ple, if the (evidence, prediction) of the second-top predicted

class is more coherent with the reference pool of this class,

then the refined prediction will be more biased toward the

second-top class.

Assuming test image sj , where j ∈ 1, . . . ,m and m is

the number of testing examples, sj is passed through the

conventional CNN resulting in vj,0, a vector of class con-

ditional probabilities having some top-k classes c1, . . . , ck
to be considered for the prediction refinement. We ob-

tain the evidence for each of the top-k predicted classes

e
j,c1
0

, . . . , e
j,ck
0

, and pass each one through the Evidence

CNN to get the following output class conditional proba-

bility vectors v
j,c1
0

, . . . , v
j,ck
0

. We then perform adversarial

erasing to get the next most salient evidence e
j,c1
l , . . . , e

j,ck
l

and their corresponding class conditional probability vec-

tors v
j,c1
l , . . . , v

j,ck
l , for l ∈ 1, . . . , L. Finally, we compute

a weighted combination of the class conditional probability

vectors proportional to their saliency. The estimated, re-

fined class c
j
ref is determined as the class having the maxi-

mum aggregate prediction in the weighted combination.

3. Experiments

Datasets. We report experimental results on two fine-

grained classification datasets following [12, 4, 18, 2, 19].

CaltechUCSD (CUB-200-2011) Birds Dataset [14] is a

fine-grained dataset of 200 bird species (∼12K images).

Stanford Dogs Dataset [7] is a fine-grained dataset of 120

dog species (∼20K images).

Architecture and Setup. To validate the benefit of

Guided Zoom, we purposely use a simple CNN baseline

with a vanilla training scheme. We use a ResNet-101 net-

work as the conventional CNN and baseline, extending the

input size from the default 224x224-pixel to 448x448-pixel

following [12, 4, 8].

For the Evidence CNN, we use a ResNet-101 architec-

ture, but use the standard 224x224-pixel input size to keep

the patches close to their original image resolution. For both

the conventional and Evidence CNNs, and for all the three

datasets, we use stochastic gradient descent, a batch size of

64, a starting learning rate of 0.001, multiplied by 0.1 every

10K iterations for 30K iterations, and momentum of 0.9.

We demonstrate the benefit of using evidence informa-

tion from the top-3 and top-5 predicted classes, so we set
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k = 3, 5 in our experiments. We perform two rounds of

adversarial erasing in testing; setting L = 2.

Results. We now present results on the fine-grained

datasets: CUB-200-2011 Birds and Stanford Dogs. In this

section, we demonstrate how training our Evidence CNN

benefits from using implicit part detection by adversarial

erasing to obtain the next most-salient evidence which tar-

gets providing complementary zooming on salient parts.

Table 1 presents the results. For the CUB-200-2011

Birds dataset, our conventional CNN (ResNet-101 base-

line) achieves 82.3% top-1 accuracy. Utilizing the top-

3 (top-5) class predictions together with their associated

evidence, Guided Zoom boosts the top-1 class accu-

racy from 82.3% to 85.0% (85.4%). For the Stanford

Dogs dataset, our conventional CNN (ResNet-101 baseline)

achieves 86.9% top-1 accuracy. Utilizing the top-3 (top-

5) class predictions together with their associated evidence,

Guided Zoom boosts the top-1 accuracy from 86.9% to

88.4% (88.5%), which is state-of-the-art result.

Guided Zoom outperforms RA-CNN on both datasets.

From this we can conclude that our multi-zooming is

more beneficial than a single recursive zoom. Guided

Zoom outperforms OSME + MAMC on the Stanford Dogs

Dataset, but the opposite is true for the CUB-200-2011

Birds Dataset. Being a generic framework, we plan to

next apply Guided Zoom to further boost performance of

state-of-the-art methods.

Conclusion

In this work, we devise a methodology that utilizes ex-

plicit spatial grounding to refine a model’s prediction at test

time. Our refinement module selects one of the top-k model

predictions based on which has the most reasonable (evi-

dence, prediction) pair; defined as the most consistent with

respect to a pre-defined pool generated once using adversar-

ial erasing of a grounding technique. We find that Guided

Zoom improves a base model’s prediction accuracy.
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